Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Front Immunol ; 15: 1351898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464530

RESUMO

Pregnancy is an immunologically regulated, complex process. A tightly controlled complement system plays a crucial role in the successful establishment of pregnancy and parturition. Complement inhibitors at the feto-maternal interface are likely to prevent inappropriate complement activation to protect the fetus. In the present study, we aimed to understand the role of Factor H (FH), a negative regulator of complement activation, in normal pregnancy and in a model of pathological pregnancy, i.e. preeclampsia (PE). The distribution and expression of FH was investigated in placental tissues, various placental cells, and in the sera of healthy (CTRL) or PE pregnant women via immunohistochemistry, RT-qPCR, ELISA, and Western blot. Our results showed a differential expression of FH among the placental cell types, decidual stromal cells (DSCs), decidual endothelial cells (DECs), and extravillous trophoblasts (EVTs). Interestingly, FH was found to be considerably less expressed in the placental tissues of PE patients compared to normal placental tissue both at mRNA and protein levels. Similar results were obtained by measuring circulating FH levels in the sera of third trimester CTRL and PE mothers. Syncytiotrophoblast microvesicles, isolated from the placental tissues of PE and CTRL women, downregulated FH expression by DECs. The present study appears to suggest that FH is ubiquitously present in the normal placenta and plays a homeostatic role during pregnancy.


Assuntos
Placenta , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Fator H do Complemento/metabolismo , Células Endoteliais/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo
2.
Front Immunol ; 15: 1323198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384463

RESUMO

One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Imunoterapia
3.
Sci Rep ; 14(1): 2971, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316875

RESUMO

The morphological perspective of the camel brain remains largely unexplored. Therefore, studying the topography of the camel brain is of crucial importance. This study aimed to provide a detailed color-coded topographic representation of the camel brain's gross anatomy and nomenclature, showing its various gyri and sulci and their borders. We compared them to previously known information to develop a detailed description of camel brain exterior architecture. Our research identified distinctive gyri and sulci with discrete positions and surrounding structures, allowing us to define sulci boundaries and establish logical gyri nomenclature. This study uncovered previously overlooked gyri and sulci and improved descriptions of specific sulci. The ectomarginal sulcus, splenial sulcus, splenial gyrus, and ectogenual gyrus are a few examples. These findings highlight several unique anatomical features of the dromedary brain, which can guide future research. By providing a comprehensive examination of the distinctive exterior anatomical features of the camel brain, this study may serve as a point of convergence for all researchers, providing more accurate identification of the gyri and sulci.


Assuntos
Encéfalo , Camelus , Animais , Encéfalo/anatomia & histologia , Cabeça , Lobo Parietal , Lobo Límbico , Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia
5.
Sci Rep ; 13(1): 17354, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833397

RESUMO

Irrespective of the exceptional adaptation of dromedaries to harsh environmental conditions, they remain highly susceptible to joint lameness resulting from a range of diverse factors and conditions. The joints most often affected by traumatic osteoarthritis in dromedaries are the metacarpophalangeal and metatarsophalangeal joints. A comprehensive understanding of joint anatomy and topography of the dromedary is required to perform arthrocentesis correctly on affected joints. Forty-two distal limbs were taken from 28 camels and studied by gross dissection, casting, ultrasonography, and computed tomography (CT). Representative three-dimensional models of the joint cavities, recesses, and pouches were obtained using different casting agents. This study provides a detailed description of dorsally, axially, and abaxially positioned joint recesses, as well as palmar/plantar positioned joint pouches. The safety and feasibility of the different arthrocentesis approaches were evaluated. The traditional dorsal arthrocentesis approach of the metacarpophalangeal, metatarsophalangeal, proximal interphalangeal, and distal interphalangeal joints, has limitations due to the risk of damaging the tendon structures and articular cartilage, which can lead to joint degeneration. A lateral arthrocentesis approach via the proximal palmar/plantar pouches of the metacarpophalangeal/metatarsophalangeal and proximal interphalangeal joints is recommended. This approach eliminates the potential needle injury to the articulating joint cartilage and other surrounding joint structures, such as tendons, blood vessels, and nerves.


Assuntos
Cartilagem Articular , Articulação Metatarsofalângica , Animais , Camelus , Artrocentese , Membro Anterior , Articulações/diagnóstico por imagem , Articulações/cirurgia , Articulação Metatarsofalângica/diagnóstico por imagem , Articulação Metatarsofalângica/cirurgia
6.
Front Immunol ; 14: 1191083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398656

RESUMO

Brain fog can be described as a constellation of new-onset neuropsychiatric sequelae in the post-acute phase of COVID-19 (long COVID). The symptoms include inattention, short-term memory loss, and reduced mental acuity, which may undermine cognition, concentration, and sleep. This cognitive impairment, persisting for weeks or months after the acute phase of SARS-CoV-2 infection, can significantly impact on daily activities and the quality of life. An important role for the complement system (C) in the pathogenesis of COVID-19 has emerged since the beginning of pandemic outbreak. A number of pathophysiological characteristics including microangiopathy and myocarditis have been attributed to dysregulated C activation due to SARS-CoV-2 infection. Mannan-binding lectin (MBL), the first recognition subcomponent of the C lectin pathway, has been shown to bind to glycosylated SARS-CoV-2 spike protein, genetic variants of MBL2 are suggested to have an association with severe COVID-19 manifestations requiring hospitalization. In the present study, we evaluated MBL activity (lectin pathway activation) and levels in the sera of a cohort of COVID-19 patients, presenting brain fog or only hyposmia/hypogeusia as persistent symptoms, and compared them with healthy volunteers. We found significantly lower levels of MBL and lectin pathway activity in the sera of patients experiencing brain fog as compared to recovered COVID-19 patients without brain fog. Our data indicate that long COVID-associated brain fog can be listed among the variegate manifestations of increased susceptibility to infections and diseases contributed by MBL deficiency.


Assuntos
COVID-19 , Lectina de Ligação a Manose , Fadiga Mental , Síndrome Pós-COVID-19 Aguda , Humanos , Encéfalo , COVID-19/complicações , Lectinas , Lectina de Ligação a Manose/genética , Síndrome Pós-COVID-19 Aguda/complicações , Qualidade de Vida , SARS-CoV-2 , Fadiga Mental/etiologia
7.
Viruses ; 15(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37376569

RESUMO

The complement system is a key component of the innate immune response to viruses and proinflammatory events. Exaggerated complement activation has been attributed to the induction of a cytokine storm in severe SARS-CoV-2 infection. However, there is also an argument for the protective role of complement proteins, given their local synthesis or activation at the site of viral infection. This study investigated the complement activation-independent role of C1q and C4b-binding protein (C4BP) against SARS-CoV-2 infection. The interactions of C1q, its recombinant globular heads, and C4BP with the SARS-CoV-2 spike and receptor binding domain (RBD) were examined using direct ELISA. In addition, RT-qPCR was used to evaluate the modulatory effect of these complement proteins on the SARS-CoV-2-mediated immune response. Cell binding and luciferase-based viral entry assays were utilised to assess the effects of C1q, its recombinant globular heads, and C4BP on SARS-CoV-2 cell entry. C1q and C4BP bound directly to SARS-CoV-2 pseudotype particles via the RBD domain of the spike protein. C1q via its globular heads and C4BP were found to reduce binding as well as viral transduction of SARS-CoV-2 spike protein expressing lentiviral pseudotypes into transfected A549 cells expressing human ACE2 and TMPRSS2. Furthermore, the treatment of the SARS-CoV-2 spike, envelope, nucleoprotein, and membrane protein expressing alphaviral pseudotypes with C1q, its recombinant globular heads, or C4BP triggered a reduction in mRNA levels of proinflammatory cytokines and chemokines such as IL-1ß, IL-8, IL-6, TNF-α, IFN-α, and RANTES (as well as NF-κB) in A549 cells expressing human ACE2 and TMPRSS2. In addition, C1q and C4BP treatment also reduced SARS-CoV-2 pseudotype infection-mediated NF-κB activation in A549 cells expressing human ACE2 and TMPRSS2. C1q and C4BP are synthesised primarily by hepatocytes; however, they are also produced by macrophages, and alveolar type II cells, respectively, locally at the pulmonary site. These findings support the notion that the locally produced C1q and C4BP can be protective against SARS-CoV-2 infection in a complement activation-independent manner, offering immune resistance by inhibiting virus binding to target host cells and attenuating the infection-associated inflammatory response.


Assuntos
COVID-19 , Proteína de Ligação ao Complemento C4b , Humanos , Proteína de Ligação ao Complemento C4b/química , Proteína de Ligação ao Complemento C4b/metabolismo , Complemento C1q/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Ligação Proteica
9.
Front Immunol ; 14: 1151194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334363

RESUMO

Complement component C1q can act as a pro-tumorigenic factor in the tumor microenvironment (TME). The TME in malignant pleural mesothelioma (MPM) is rich in C1q and hyaluronic acid (HA), whose interaction enhances adhesion, migration and proliferation of malignant cells. HA-bound C1q is also capable of modulating HA synthesis. Thus, we investigated whether HA-C1q interaction would affect HA degradation, analyzing the main degradation enzymes, hyaluronidase (HYAL)1 and HYAL2, and a C1q receptor candidate. We first proceeded with the characterization of HYALs in MPM cells, especially HYAL2, since bioinformatics survival analysis revealed that higher HYAL2 mRNA levels have an unfavorable prognostic index in MPM patients. Interestingly, Real-Time quantitative PCR, flow cytometry and Western blot highlighted an upregulation of HYAL2 after seeding of primary MPM cells onto HA-bound C1q. In an attempt to unveil the receptors potentially involved in HA-C1q signaling, a striking co-localization between HYAL2 and globular C1q receptor/HABP1/p32 (gC1qR) was found by immunofluorescence, surface biotinylation and proximity ligation assays. RNA interference experiments revealed a potentially regulatory function exerted by gC1qR on HYAL2 expression, since C1QBP (gene for gC1qR) silencing unexpectedly caused HYAL2 downregulation. In addition, the functional blockage of gC1qR by a specific antibody hindered HA-C1q signaling and prevented HYAL2 upregulation. Thus, C1q-HA interplay is responsible for enhanced HYAL2 expression, suggesting an increased rate of HA catabolism and the release of pro-inflammatory and pro-tumorigenic HA fragments in the MPM TME. Our data support the notion of an overall tumor-promoting property of C1q. Moreover, the overlapping localization and physical interaction between HYAL2 and gC1qR suggests a potential regulatory effect of gC1qR within a putative HA-C1q macromolecular complex.


Assuntos
Ácido Hialurônico , Mesotelioma Maligno , Humanos , Ácido Hialurônico/metabolismo , Complemento C1q/metabolismo , Glicoproteínas de Membrana/metabolismo , Microambiente Tumoral , Proteínas de Transporte , Proteínas Mitocondriais/genética
10.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108447

RESUMO

Dysfunction of the immune system can result in damage of the peripheral nervous system. The immunological mechanisms, which include macrophage infiltration, inflammation and proliferation of Schwann cells, result in variable degrees of demyelination and axonal degeneration. Aetiology is diverse and, in some cases, may be precipitated by infection. Various animal models have contributed and helped to elucidate the pathophysiological mechanisms in acute and chronic inflammatory polyradiculoneuropathies (Guillain-Barre Syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, respectively). The presence of specific anti-glycoconjugate antibodies indicates an underlying process of molecular mimicry and sometimes assists in the classification of these disorders, which often merely supports the clinical diagnosis. Now, the electrophysiological presence of conduction blocks is another important factor in characterizing another subgroup of treatable motor neuropathies (multifocal motor neuropathy with conduction block), which is distinct from Lewis-Sumner syndrome (multifocal acquired demyelinating sensory and motor neuropathy) in its response to treatment modalities as well as electrophysiological features. Furthermore, paraneoplastic neuropathies are also immune-mediated and are the result of an immune reaction to tumour cells that express onconeural antigens and mimic molecules expressed on the surface of neurons. The detection of specific paraneoplastic antibodies often assists the clinician in the investigation of an underlying, sometimes specific, malignancy. This review aims to discuss the immunological and pathophysiological mechanisms that are thought to be crucial in the aetiology of dysimmune neuropathies as well as their individual electrophysiological characteristics, their laboratory features and existing treatment options. Here, we aim to present a balance of discussion from these diverse angles that may be helpful in categorizing disease and establishing prognosis.


Assuntos
Síndrome de Guillain-Barré , Neurite (Inflamação) , Polineuropatias , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Animais , Autoanticorpos , Inflamação
11.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901824

RESUMO

Although only 0.8-1% of SARS-CoV-2 infections are in the 0-9 age-group, pneumonia is still the leading cause of infant mortality globally. Antibodies specifically directed against SARS-CoV-2 spike protein (S) are produced during severe COVID-19 manifestations. Following vaccination, specific antibodies are also detected in the milk of breastfeeding mothers. Since antibody binding to viral antigens can trigger activation of the complement classical - pathway, we investigated antibody-dependent complement activation by anti-S immunoglobulins (Igs) present in breast milk following SARS-CoV-2 vaccination. This was in view of the fact that complement could play a fundamentally protective role against SARS-CoV-2 infection in newborns. Thus, 22 vaccinated, lactating healthcare and school workers were enrolled, and a sample of serum and milk was collected from each woman. We first tested for the presence of anti-S IgG and IgA in serum and milk of breastfeeding women by ELISA. We then measured the concentration of the first subcomponents of the three complement pathways (i.e., C1q, MBL, and C3) and the ability of anti-S Igs detected in milk to activate the complement in vitro. The current study demonstrated that vaccinated mothers have anti-S IgG in serum as well as in breast milk, which is capable of activating complement and may confer a protective benefit to breastfed newborns.


Assuntos
COVID-19 , SARS-CoV-2 , Recém-Nascido , Lactente , Feminino , Humanos , Vacinas contra COVID-19 , Lactação , Leite Humano , Proteínas do Sistema Complemento , Imunoglobulina G , Anticorpos Antivirais
12.
Immunobiology ; 228(2): 152321, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805109

RESUMO

Mycobacterium tuberculosis has thrived in parallel with humans for millennia, and despite our efforts, M. tuberculosis continues to plague us, currently infecting a third of the world's population. The success of M. tuberculosis has recently been attributed, in part, to the PE-PPE family; a unique collection of 168 proteins fundamentally involved in the pathogenesis of M. tuberculosis. The PE-PPE family proteins have been at the forefront of intense research efforts since their discovery in 1998 and whilst our knowledge and understanding has significantly advanced over the last two decades, many important questions remain to be elucidated. This review consolidates and examines the vast body of existing literature regarding the PE-PPE family proteins, with respect to the latest developments in elucidating their evolution, structure, subcellular localisation, function, and immunogenicity. This review also highlights significant inconsistencies and contradictions within the field. Additionally, possible explanations for these knowledge gaps are explored. Lastly, this review poses many important questions, which need to be addressed to complete our understanding of the PE-PPE family, as well as highlighting the challenges associated with studying this enigmatic family of proteins. Further research into the PE-PPE family, together with technological advancements in genomics and proteomics, will undoubtedly improve our understanding of the pathogenesis of M. tuberculosis, as well as identify key targets/candidates for the development of novel drugs, diagnostics, and vaccines.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Proteínas de Bactérias , Antígenos de Bactérias , Genômica
13.
Biochem Biophys Res Commun ; 651: 20-29, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36774662

RESUMO

Pericytes are multifunctional cells wrapped around capillary endothelia, essential for vascular health, development, and blood flow regulation, although their role in human placental chorionic villi has not been fully explored. The second half of normal pregnancy is characterized by a progressive decline in placental and fetal oxygen levels which, by term, comprises a substantial degree of hypoxia. We hypothesized this hypoxia would stimulate pericyte regulation of chorionic villous capillary function. This study's objective was to investigate the role of hypoxia on normal term placental pericytes (PLVP) and their signaling to endothelial cells. First, we confirmed fetoplacental hypoxia at term by a new analysis of umbilical arterial blood oxygen tension of 3,010 healthy singleton neonates sampled at caesarean section and before labor. We then measured the release of cytokines, chemokines, and small extracellular vesicles (PLVPsv), from PLVP cultured at 20%, 8% and 1% O2. As O2 levels decreased, secreted cytokines and chemokines [interleukin-6 (IL-6), interleukin-1α (IL-1α) and vascular endothelial growth factor (VEGF)], and small extracellular vesicle markers, (Alix, Syntenin and CD9) increased significantly in the culture supernatants. When primary human umbilical vein endothelial cells (HUVEC) were cultured with PLVPsv, polygon formation, number, and tube formation length was significantly increased compared to cells not treated with PLVPsv, indicating PLVPsv stimulated angiogenesis. We conclude that adding PLVPsv stimulates angiogenesis and vessel stabilization on neighboring endothelial cells in response to hypoxia in term pregnancy compared to no addition of PLVPsv. Our finding that PLVP can release angiogenic molecules via extracellular vesicles in response to hypoxia may apply to other organ systems.


Assuntos
Vesículas Extracelulares , Placenta , Recém-Nascido , Feminino , Gravidez , Humanos , Placenta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pericitos/metabolismo , Cesárea , Hipóxia/metabolismo , Oxigênio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo
14.
Front Immunol ; 14: 1061899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817439

RESUMO

Haematophagous arthropods can harbor various pathogens including viruses, bacteria, protozoa, and nematodes. Insects possess an innate immune system comprising of both cellular and humoral components to fight against various infections. Haemocytes, the cellular components of haemolymph, are central to the insect immune system as their primary functions include phagocytosis, encapsulation, coagulation, detoxification, and storage and distribution of nutritive materials. Plasmatocytes and granulocytes are also involved in cellular defense responses. Blood-feeding arthropods, such as mosquitoes and ticks, can harbour a variety of viral pathogens that can cause infectious diseases in both human and animal hosts. Therefore, it is imperative to study the virus-vector-host relationships since arthropod vectors are important constituents of the ecosystem. Regardless of the complex immune response of these arthropod vectors, the viruses usually manage to survive and are transmitted to the eventual host. A multidisciplinary approach utilizing novel and strategic interventions is required to control ectoparasite infestations and block vector-borne transmission of viral pathogens to humans and animals. In this review, we discuss the arthropod immune response to viral infections with a primary focus on the innate immune responses of ticks and mosquitoes. We aim to summarize critically the vector immune system and their infection transmission strategies to mammalian hosts to foster debate that could help in developing new therapeutic strategies to protect human and animal hosts against arthropod-borne viral infections.


Assuntos
Artrópodes , Culicidae , Carrapatos , Viroses , Animais , Humanos , Ecossistema , Mosquitos Vetores , Vetores Artrópodes , Artrópodes/fisiologia , Interações Hospedeiro-Patógeno , Mamíferos
16.
Immunobiology ; 228(2): 152317, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592542

RESUMO

Nanoparticles (NPs) are not only employed in many biomedical applications in an engineered form, but also occur in our environment, in a more hazardous form. NPs interact with the immune system through various pathways and can lead to a myriad of different scenarios, ranging from their quiet removal from circulation by macrophages without any impact for the body, to systemic inflammatory effects and immuno-toxicity. In the latter case, the function of the immune system is affected by the presence of NPs. This review describes, how both the innate and adaptive immune system are involved in interactions with NPs, together with the models used to analyse these interactions. These models vary between simple 2D in vitro models, to in vivo animal models, and also include complex all human organ on chip models which are able to recapitulate more accurately the interaction in the in vivo situation. Thereafter, commonly encountered NPs in both the environment and in biomedical applications and their possible effects on the immune system are discussed in more detail. Not all effects of NPs on the immune system are detrimental; in the final section, we review several promising strategies in which the immune response towards NPs can be exploited to suit specific applications such as vaccination and cancer immunotherapy.


Assuntos
Macrófagos , Nanopartículas , Animais , Humanos , Imunoterapia
17.
Immunobiology ; 228(1): 152303, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36495597

RESUMO

Candida, as a part of the human microbiota, can cause opportunistic infections that are either localised or systemic candidiasis. Emerging resistance to the standard antifungal drugs is associated with increased mortality rate due to invasive Candida infections, particularly in immunocompromised patients. While there are several species of Candida, an increasing number of Candida tropicalis isolates have been recently reported from patients with invasive candidiasis or inflammatory bowel diseases. In order to establish infections, C. tropicalis has to adopt several strategies to escape the host immune attack. Understanding the immune evasion strategies is of great importance as these can be exploited as novel therapeutic targets. C. albicans pH-related antigen 1 (CaPra1), a surface bound and secretory protein, has been found to interact strongly with the immune system and help in complement evasion. However, the role of C. tropicalis Pra1 (CtPra1) and its interaction with the complement is not studied yet. Thus, we characterised how pH-related antigen 1 of C. tropicalis (CtPra1) interacts with some of the key complement proteins of the innate immune system. CtPra1 was recombinantly produced using a Kluyveromyces lactis yeast expression system. Recombinant CtPra1, was found to bind human C3 and C3b, central molecules of the complement pathways that are important components of the innate immune system. It was also found to bind human complement regulatory proteins factor-H and C4b-binding protein (C4BP). CtPra1-factor-H and CtPra1-C4BP interactions were found to be ionic in nature as the binding intensity affected by high sodium chloride concentrations. CtPra1 inhibited functional complement activation with different effects on classical (∼20 %), lectin (∼25 %) and alternative (∼30 %) pathways. qPCR experiments using C. tropicalis clinical isolates (oral, blood and peritoneal fluid) revealed relatively higher levels of expression of CtPra1 gene when compared to the reference strain. Native CtPra1 was found to be expressed both as membrane-bound and secretory forms in the clinical isolates. Thus, C. tropicalis appears to be a master of immune evasion by using Pra1 protein. Further investigation using in-vivo models will help ascertain if these proteins can be novel therapeutic targets.


Assuntos
Candida tropicalis , Candidíase , Proteína de Ligação ao Complemento C4b , Proteínas Fúngicas , Humanos , Candida tropicalis/imunologia , Complemento C3/metabolismo , Complemento C3b/metabolismo , Proteína de Ligação ao Complemento C4b/metabolismo , Concentração de Íons de Hidrogênio , Ligação Proteica , Proteínas Fúngicas/imunologia , Candidíase/imunologia , Candidíase/microbiologia
18.
Front Immunol ; 14: 1289769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162642

RESUMO

Introduction: The evolution of adaptive immunity in Camelidae resulted in the concurrent expression of classic heterotetrameric and unconventional homodimeric heavy chain-only IgG antibodies. Heavy chain-only IgG bears a single variable domain and lacks the constant heavy (CH) γ1 domain required for pairing with the light chain. It has not been reported whether this distinctive feature of IgG is also observed in the IgA isotype. Methods: Gene-specific primers were used to generate an IgA heavy chain cDNA library derived from RNA extracted from the dromedary's third eyelid where isolated lymphoid follicles and plasma cells abound at inductive and effector sites, respectively. Results: Majority of the cDNA clones revealed hallmarks of heavy chain-only antibodies, i.e. camelid-specific amino acid substitutions in framework region 1 and 2, broad length distribution of complementarity determining region 3, and the absence of the CHα1 domain. In a few clones, however, the cDNA of the canonical IgA heavy chain was amplified which included the CHα1 domain, analogous to CHγ1 domain in IgG1 subclass. Moreover, we noticed a short, proline-rich hinge, and, at the N-terminal end of the CHα3 domain, a unique, camelid-specific pentapeptide of undetermined function, designated as the inter-α region. Immunoblots using rabbit anti-camel IgA antibodies raised against CHα2 and CHα3 domains as well as the inter-α region revealed the expression of a ~52 kDa and a ~60 kDa IgA species, corresponding to unconventional and canonical IgA heavy chain, respectively, in the third eyelid, trachea, small and large intestine. In contrast, the leporine anti-CHα1 antibody detected canonical, but not unconventional IgA heavy chain, in all the examined tissues, milk, and serum, in addition to another hitherto unexplored species of ~45 kDa in milk and serum. Immunohistology using anti-CHα domain antibodies confirmed the expression of both variants of IgA heavy chains in plasma cells in the third eyelid's lacrimal gland, conjunctiva, tracheal and intestinal mucosa. Conclusion: We found that in the dromedary, the IgA isotype has expanded the immunoglobulin repertoire by co-expressing unconventional and canonical IgA heavy chains, comparable to the IgG class, thus underscoring the crucial role of heavy chain-only antibodies not only in circulation but also at the mucosal frontiers.


Assuntos
Camelus , Cadeias Pesadas de Imunoglobulinas , Animais , Coelhos , DNA Complementar , Imunoglobulina G , Imunoglobulina A
19.
Front Immunol ; 13: 1037191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439146

RESUMO

C1q, the recognition molecule of the classical pathway of the complement system, plays a central role in pregnancy. Lack of C1q is characterized by poor trophoblast invasion and pregnancy failure. C1q can be the target of an antibody response: anti-C1q autoantibodies (anti-C1q) are present in several infectious and autoimmune diseases. The presence of these autoantibodies has been detected also in 2-8% of the general population. Recent evidence indicates that women who undergo assisted reproductive technology (ART) have an increased risk of developing pre-eclampsia (PE), particularly oocyte donation (OD) pregnancies. The aim of this study was to characterize the levels of C1q and anti-C1q in PE gestations, in healthy spontaneous, homologous and heterologous ART pregnancies. Serum of the following four groups of women, who were followed throughout two or three trimesters, were collected: PE, patients diagnosed with PE; OD, oocyte donation recipients; HOM, homologous ART women; Sp, spontaneous physiological pregnancy. Our results indicate that PE patients have lower levels of anti-C1q. In ART pregnant women, the trend of C1q and anti-C1q levels were similar to PE patients, even though these women did not develop PE-like symptoms during pregnancy. This finding suggests an immunological dysfunction at the foetal-maternal interface in ART pregnancies, a hypothesis confirmed by the observation of C1q deposition in placentae derived from OD, comparable to PE. Since significantly lower levels of anti-C1q were detected in PE compared to healthy control sera, we hypothesize the possible binding on placental syncytiotrophoblast microvesicles (STBM), which are increased in the circulation of PE mothers. Furthermore, the characterization of the binding-epitope of anti-C1q revealed that "physiological" autoantibodies were mainly directed against C1q globular domain. We concluded that anti-C1q could have a physiological role in pregnancy: during the healthy spontaneous pregnancy the raised levels of these autoantibodies can be important for the clearance of STBM. In PE and in pathological pregnancies (but also in OD pregnancies), the increase in syncytiotrophoblast apoptosis and consequent increase of the circulating STMB levels lead to a consumption of C1q and anti-C1q.


Assuntos
Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Autoanticorpos , Complemento C1q , Estudos Longitudinais , Placenta/metabolismo
20.
Immunobiology ; 227(6): 152279, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272344

RESUMO

Influenza A virus (IAV) is a contagious respiratory infection causing pathogen responsible for high morbidity and mortality rates across the planet. The human immune system contains a wide range of soluble activators, membrane-bound receptors, and regulators to eliminate IAVs. Despite these various immune mechanisms that neutralize IAVs or restrict their replication, IAVs have developed distinct strategies to evade host immunity and establish a successful infection. Given the higher and continuous rate of mutations in IAVs, decades of research have focused on understanding the host's immune mechanisms against IAVs, and the evasion strategies employed by the virus to overcome the host immune system. Future IAV pandemics or epidemics remain inevitable, and a greater understanding of the host-pathogen interaction involved is required to develop universal vaccines and treatments against IAV. Here, we review how the host immune system responds to IAV infection as well as the strategies employed by the IAV to evade host immune surveillance. Furthermore, this review also focuses on the treatments and vaccines that have been developed to counter IAV infection.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Evasão da Resposta Imune , Imunidade Inata , Influenza Humana/prevenção & controle , Interações Hospedeiro-Patógeno , Vacinação , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...